skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baudoin, Fabrice"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. In this paper we prove that several natural approaches to Sobolev spaces coincide on the Vicsek fractal. More precisely, we show that the metric approach of Korevaar-Schoen, the approach by limit of discrete \(p\)-energies and the approach by limit of Sobolev spaces on cable systems all yield the same functional space with equivalent norms for \(p>1\). As a consequence we prove that the Sobolev spaces form a real interpolation scale. We also obtain \(L^p\)-Poincaré inequalities for all values of \(p \ge 1\). 
    more » « less
  3. Abstract We study the Brownian motion on the non-compact Grassmann manifold $$\frac {\textbf {U}(n-k,k)} {\textbf {U}(n-k)\textbf {U}(k)}$$ and some of its functionals. The key point is to realize this Brownian motion as a matrix diffusion process, use matrix stochastic calculus and take advantage of the hyperbolic Stiefel fibration to study a functional that can be understood in that setting as a generalized stochastic area process. In particular, a connection to the generalized Maass Laplacian of the complex hyperbolic space is presented and applications to the study of Brownian windings in the Lie group $$\textbf {U}(n-k,k)$$ are then given. 
    more » « less